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Abstract—Automated object tracking in video sequences has
been applied in areas such as security and surveillance, traffic
control, medical image processing and video communications. To
maintain robust precision in matching our algorithm’s position
estimates with ground truth, feature detection accuracy and
confidence measures are needed by tracking algorithms. Experi-
ments are conducted to quantify how feature descriptors used for
tracking are degraded. A Kalman filter is then used to enhance
accuracy. In our application, Kalman covariance parameters
are continually tuned using a confidence level obtained based
on object descriptor robustness. Because the Kalman algorithm
converges quickly and does not require prior training, it is ideally
suited for real-time object tracking.

Index Terms—Kalman, Histogram of Oriented Gradients,
Occlusion, Covariance, Object Tracking.

I. INTRODUCTION

Feature detection based object tracking can be difficult due
to occlusions and noise impediments such as Gaussian noise,
blurring, saturation, salt-and-pepper noise and illumination
variability. In our implementation, the Histogram of Oriented
Gradients (HOG) [1] is used to identify object features in
a video frame. However, there are certain vulnerabilities for
HOG based detectors. These include loss of track due to noise
impediments, occlusions and false detections.

Using HOG feature detection, a ground truth based gradient
vector is used for correlation purposes. Ambiguity can occur
when the maximum HOG response is close in magnitude to
other responses located at different positions within the image.
The presence of noise exacerbates this problem, increasing
possibilities for false object detections and loss of track.

In real-time object tracking, only a subsection of the video
frame is searched. This reduces computational complexity,
making real-time tracking possible. Other approaches have
been successful, but at the expense of computational com-
plexity [2], [3]. If the tracked object is lost, it cannot be easily
recovered.

II. KALMAN FILTER

The Kalman Filter [4] is used for predicting a linear
system in the presence of Gaussian distributed noise. The
Kalman filter process and measurement equations (1-2) use the
respective update equations (3-7). For our tracking application,
the state vector in (8) includes position and velocity.

xk = Axk−1 + ωk−1 (1)

zk = Hxk + vk (2)

Time Update Equations

x̂k = Ax̂k−1 (3)

P−
k = AP̂k−1A

T +Q (4)

Measurement Update Equations

Kk = P−
k HT (HP−

k HT +R)−1 (5)

x̂k = x̂−
k +Kk(zk −Hx̂−

k ) (6)

Pk = (I −KkH)P−
k (7)

with the following parameters defined below-
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∣∣X Y Ẋ Ẏ

∣∣T (8)
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Pk = E
[
(xk − x̂k)(xk − x̂k)

T
]

(12)
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Fig. 1. Diagram depicting steps used by Kalman filter.

The Kalman filter is a linear estimator which minimizes
mean square error between estimate and actual position. Real-
time estimates for system parameters such as position and
velocity are made for each time increment. Each estimate is
continually updated using measurements subject to noise im-
pediments. A HOG feature detector provides the measurement
for the tracked object position (see Fig. 1).

To illustrate Kalman filter tracking capabilities, several one
dimensional plots were constructed showing tracking capabil-
ities using an input signal with an abrupt position change. Fig.
2&3 are shown with a Gaussian noise added to the signal with
standard deviation σ = 0.2 and 0.4 respectively.

Fig. 2. Kalman filter tracking abrupt change (σ = 0.2)

Fig. 3. Kalman filter tracking abrupt change (σ = 0.4)

One further observation is shown here whereby the Kalman
measurement uncertainty ωk is varied. Measurement uncer-

tainty can be updated for each measurement based on the
performance of our feature tracker. This will be discussed
below.

Fig. 4. Kalman tracker response vs changes in measurement noise uncertainty.

A. Histogram Oriented Gradients Feature Detector

Feature extraction is a fundamental step in object detection.
The histogram oriented gradient method proposed by Dalal
et al Dalal [5] has been widely accepted due to its relative
insensitivity to rotation, deformation and illumination. The
fundamental concept behind HOG is that an object shape in
an image can be recognized by its edges. The HOG descriptor
captures and encodes the object shape as the distribution of
local intensity gradients or edge directions. A brief description
of the process used in the HOG algorithm is shown below.

Gradients are calculated for each pixel in the image in both
the x and y directions.

Gradient Vector Calculations

Gh(x, y) = f(x+ 1, y)− f(x− 1, y) ∀x, y (13)

Gv(x, y) = f(x, y + 1)− f(x, y − 1) ∀x, y (14)

Gradient Magnitude

M(x, y) =
√

Gh(x, y)2 +Gv(x, y)2) (15)

Gradient Direction

θ(x, y) = tan−1

(
Gv(x, y)

Gh(x, y)

)
(16)

To minimize computation time for real-time tracking, only a
subset of the image (detection window) is searched to deter-
mine object position. The detection window is continuously
updated such that the object is centered inside the window in
each video frame.
Each pixel of the image is filtered using the template [-1 0 1].
The image is organized into cells, each of which comprises
8x8 pixels. Each cell consists of 9 histogram bins. Four cells
compose a block. Blocks are scanned across the image in both
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Fig. 5. Image shows Detection Window ”Patch (red box)”. Target object
shown in (blue box). HOG scan conducted in Detection Window only to
facilitate real-time tracking.

the X and Y directions, allowing for a 50% overlap. The
image with corresponding detection window and target area
are shown in the figure above. The histogram binning process
and HOG structure is illustrated in the figure below.

Fig. 6. HOG calculation algorithm

Once the HOG detection process completes its scan across the
detection window, a response is given for each cell area. The
maximum response shows object position. The value of the
maximum response varies according to the degree of corre-
lation. It is this information that is used to enhance Kalman
filter accuracy. Attempts have been made to use Mean Shift
descriptors with Kalman filters [6]. In this case Kalman was
used to center the target window only. Other descriptors have
been proposed to use with Kalman filtering. Invariant feature
descriptors (IFD) [7] have been used to mitigate occlusions.
However, this methods is strictly heuristic in its approach [8].

B. Scaled Kalman Filter

An online database is used to experimentally verify the
use of HOG response values to modify Kalman filter noise
parameters Wu[9]. Fifty videos are made available, each
with ground truth positions and noise impediments such as
occlusion, blur and illumination variations, among others.
Using the ’jogging’ video contained in the dataset, a plot was
made showing the variations in ground truth positions as a
function of each frame. This is shown in the figure below.

Fig. 7. Ground Truth position shown for each frame in the ’jogging’ video.

The maximum HOG response is shown for each frame in the
figure below. The maximum HOG response and the position
error are inversely proportional.

Fig. 8. Maximum HOG response and position errors shown for each frame.
An occlusion occurs during the frames when the HOG response decreases, at
which point track is lost.
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C. Simulation Results

Image sequences are shown where the tracked object is
occluded in the ”jogging” video. In this sequence, the jogger is
temporarily occluded by an obstruction. The first set of images
show track loss when a HOG-only feature detector is used. The
second set of images depict a successful track using Kalman
filtering to supplement the HOG detector in tracking the object
of interest.

Bounding boxes are superimposed over each video that
reflect the ground truth object position, HOG estimates and
Kalman filter estimates. The target window is also shown here.
Once the object moves beyond the target window, tracking is
lost and cannot be recovered without reinitialization.

Color codes for each bounding box are as follows:
• Detection Window - Purple
• Ground Truth - Red
• HOG Estimate - Green
• Kalman Tracker - Yellow (when used)

Fig. 9. In jogging video, a Kalman filter is not used. Ground Truth positions
(red) and HOG estimates (green) are each represented by a bounding box.
Track is lost due to occlusion. Once the object leaves the detection window
(purple), track cannot be easily reestablished.

Fig. 10. In this frame sequence, a Kalman filter (yellow bounding box) is
used. Both HOG estimates and Ground Truth positions are also shown with
bounding boxes. Track is maintained during occlusion event.

The video sequences show the Kalman filter (with emphasis
on minimal process noise) tracks the Ground Truth position
more accurately during and after the occlusion event. The

HOG maximum response in Fig 8 shows an abrupt decrease
in correlation accuracy (see frames 80-110) that indicates a
reduced confidence level in the measurement. This information
is used with the Kalman filter to maintain track.

III. CONCLUSION

The histogram oriented gradients feature detection operates
by correlating a reference (ground truth) vector with gradient
vectors measured in subsequent frames. The maximum HOG
response (or position where the maximum vector correlation
is measured) becomes the new object position estimate. In
our approach, we have used the degree of correlation of that
maximum HOG response as a measure of the confidence level
that the estimate is accurate. The measurement confidence
is used to scale the Kalman measurement noise variance to
enhance its tracking capabilities. Here we have shown how
the confidence we have in our HOG descriptor can be used to
improve measurement robustness for occlusion events.
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